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Introduction

07/17/06    36th International Conference on Environmental Systems

Selected Principles/Findings/Recommendations from the Life Support and 

Habitation and Planetary Protection Workshop, NASA/TM-2006-213485

 Human Mars missions will generate materials from both biotic and abiotic 
sources that could contaminate Mars and/or be classified as indicators of life.

 No human habitat or EVA system will be fully closed. Missions carrying 
humans to Mars will inevitably contaminate the planet to some degree.

 Planetary Protection requirements require definition early in mission 
development.

 Definition of “contaminants” is required. 

 How do you define “biosignature”? Biological and chemical? 

 Establish forward and back contamination limits.  

 What releases allowable?  Is any contamination acceptable?

 Define waste containment and disposal requirements

 Can waste be disposed on the surface of Mars?  If so, in what state?
What would be the containment requirements?

 Establish Earth return operations and quarantine requirements

 Currently, quantitative Planetary Protection guidelines are not available. 

 Define material inventory and characteristics, process products, and release 
mechanisms.
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Human Life Support Consumables & Wastes

Consumables 

Kilograms 
per person 

per day 

 

Wastes 
Kilograms per 
person per day 

Gases  0.8  Gases   1.0 

Oxygen 0.84   Carbon Dioxide 1.00  

Water  23.4  Water   23.7 

Drinking 1.62   Urine 1.50  

Water content of food 1.15   Perspiration/respiration 2.28  

Food preparation water 0.79   Fecal water 0.09  

Shower and hand wash 6.82   Shower and hand wash 6.51  

Clothes wash 12.50   Clothes wash 11.90  

Urine flush 0.50   Urine flush 0.50  

    Humidity condensate 0.95  

Solids  0.6  Solids   0.2 

Food 0.62   Urine 0.06  

    Feces 0.03  

    Perspiration 0.02  

    Shower & hand wash 0.01  

    Clothes wash 0.08  

TOTAL  24.8  TOTAL  24.9 

 
Quantities Fixed – Largely Determined by Basic Human Physiological Requirements

Quantities Variable – Largely Determined by Mission Requirements



ISS ECLSS: “The State of the Art”
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 Although the state-of-the-art, the ISS ECLSS is only partly closed.

 Atmosphere Revitalization:  ≈42% oxygen recovery from CO2

 Water Recovery Systems:  74-85% recovery of water from urine; 

≈100% water recovery from humidity condensate; ≈93% total 

recovery 

 Waste Management: no recycling.  We collect, store and jettison

 Significant amounts of wastes (gas, liquid and solid) are generated 

during all stages of a human mission to Mars
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Atmosphere Revitalization System (ARS)

Sources of Forward Contamination

Vented Gas

Production 

Rate†

(kg/CM/day)

Quantity Vented (kg)

Sabatier Operating Sabatier Not Operating

Crew 4 Crew 6 Crew 4 Crew 6

Methane 0.21 vs 0 454 680 0 0

Carbon Dioxide* 0.48 vs 1.04 1,037 1,555 2,246 3,370

Hydrogen 0 vs 0.10 0 0 216 324

Possible venting during 540 Day Surface Mission

†Two rates are given: the first is if CO2 reduction hardware is available; the second is if not.

*Carbon dioxide from CDRA may contain 0.04 ppm trace organics.  Integrated over 540 

days for the 6 crew w/o Sabatier case equates to approximately 141 mg.  The presence of 

micro-organisms is not known.

 The ISS ARS is designed 

to vent!

 Gases & amounts will 

vary depending on the 

real time operation of 

ARS hardware.



 Several alternative technologies have the potential to 
greatly improve closure of atmosphere revitalization 
systems over the state of the art.

Most involve improved recycling of hydrogen

 Potential solutions provide additive capability to existing 
ARS architecture or substitutional capability disruptive 
to existing architecture

 3 examples are noted below. 

Carbon Formation Reactors (CFR)
Potential for 100% recovery of oxygen

Depending on technology, convert methane or syngas to solid 
carbon and hydrogen or water depending on technology

Can be used post Sabatier in existing architecture or post SOE

Challenges: catalyst poisoning; high temperatures; gas 
separation including purity of gaseous products.

Bosch
Potential for 100% recovery of oxygen

Results in solid carbon byproduct rather than methane. 

Would replace Sabatier in existing architecture

Challenges: catalyst poisoning; high temperatures; gas 
separation

Solid Oxide Co-Electrolysis (SOE)
CO2 reduction and water electrolysis in same process, with 

direct production of O2 from CO2

SOE with embedded Sabatier may potentially yield 70-80% 
recovery of O2 and can approach 100% if followed by a CFR

Challenges: High temperatures, thermal cycling, electrode life 
and gas separation

Others include CH4 pyrolysis & photosynthesis

Sabatier 
Reactor

H2O 
Electrolyzer

H2O

H2

O2CO2

H2O (Additional)CH4 and CO2  (Vented)

Co-
Electrolysis

O2

H2O

Syngas 
(H2, CO)

CO2

Solid Oxide Co-Electrolysis

SOA Atmosphere Revitalization with Sabatier

Carbon Formation Reactor for Methane

Sabatier 
Reactor

H2O 
Electrolyzer

H2O

H2

O2CO2

CH4

Carbon Formation Reactor C (Solid)

H2

Bosch
H2O 

Electrolyzer
H2O

H2

O2CO2

C (Solid)

Bosch Process within an ARS

Carbon 
Formation 

Reactor

H2O

C (Solid)

Atmosphere Revitalization Systems

Forward Contamination Mitigation Options



Atmosphere Revitalization Systems

Forward Contamination Mitigation Options

Series-Bosch Test Stand

REACTIONS OF THE BOSCH PROCESS

RWGS                    CO2 + H2  H2O + CO

CO Hydrogenation CO + H2  H2O + C(s)

Boudouard              2CO  CO2 + C(s)

Overall Bosch        CO2 + 2H2  2H2O + C(s)

Series Bosch:   

• Series-Bosch technology can close the 
atmosphere revitalization loop for complete 
recovery of oxygen from CO2.

• It is a two reactor system, Reverse Water Gas 
Shift (RWGS) followed by a Carbon Formation 
Reactor.

• From a planetary protection perspective, we 
trade the venting of methane for solid carbon, 
which will accumulate as a solid waste within 
spacecraft at a rate of ≈ 0.27 kg/CM/day

• We have investigated incorporating Bosch 
carbon into heat melt compactor discs, and 
also combining the carbon with concreting 
materials to make “bricks” for as a planetary 
construction material. 

• There is a mass penalty for catalyst

• We have found that Mars simulated regolith 
can be used as a catalyst for the carbon 
formation reactor.

Quantity Carbon Accumulated (kg)

180-day Transit 540-day Surface

Crew 4 Crew 6 Crew 4 Crew 6

204 307 613 920
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Estimates of Gas Loss from Leakage & Airlock 
Use for Mars Habitat Lander

 Estimates of gas loss from the habitat lander based on airlock 

use and cabin leakage calculations

 NASA-SP-2009-566-ADD2 (2014) calls for "up to three 6.5-hour EVAs 

each week for habitat maintenance, trash ops, local exploration, etc." from 

the habitat lander.

 Depending on the level of airlock atmosphere recovery, and habitat 

pressure, 3 EVAs/week would result in an average air loss of 0.18-0.53 

kg/day or 95-286 kg for a 540 day surface mission.

 Given that habitat leakage can be estimated at approximately 0.1 kg/day, 

the total air loss would be 0.28-0.63 kg/day or 149-340 kg for a 540-day 

surface mission.

 Estimates of gas loss from the habitat lander based on DRM 5.0 

makeup gas requirements

 NASA-SP-2009-566-ADD (2009) estimates N2/Ar needs from leakage and 

EVAs to be 133 kg, which is equivalent to an air loss of 196 kg at 32% O2.

 200 kg total air loss from the surface habitat to the Mars 

environment per mission is a reasonable estimate for evaluating 

planetary protection impacts.
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Estimates of Contaminant Release to Mars 
Surface from 200 kg Gas Loss

Approximate Cabin Atmosphere Contaminant Levels 

Based on ISS Experience

Contaminant Value Units

Airborne Bacteria 50 CFU/m3

Airborne Fungi 10 CFU/m3

Methane 6 mg/m3

Alcohols + Acetone 6 mg/m3

Octafluoropropane 9 mg/m3

Formaldehyde 0.03 mg/m3

Other VOCs 4 mg/m3

Estimate Released

Cabin Pressure

Units8 psi 10.2 psi

15,486 12,159 CFU

3,097 2,432 CFU

1,858 1,459 mg

1,858 1,459 mg

2,787 2,189 mg

9 7 mg

1,239 973 mg

 Potential releases from habitat leakage represent about ¼ of the total 
and would be hard to mitigate.  We are assuming primary leakage is 
from seals and bulkheads (unfiltered) rather than wall of hull.

 Potential releases due to airlock use could be mitigated by suit port

 Unplanned or contingency depresses (in the case of fire or toxic 
chemical release) could result in the entire cabin volume vented.
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Water Recovery System (WRS)

Sources of Forward Contamination – ISS SOA

 Wastewater brines contain significant organic and nitrogen compounds 

Production 

Rate

(kg/CM-day)

Mass 

Fraction 

H2O

Aprx. Mass 

Fraction 

Organics*

Aprx. Mass 

Fraction 

Inorganics

Daily Production 0.31 0.900 0.072 0.028

Mission Segment & # of Crew

Total 

Produced 

(kg)

H2O Content 

(kg)

Approx. 

Organic 

Content (kg)

Approx. 

Inorganic 

Content (kg)

180-day Transit, 4 Crew 222 200 16 6

180-day Transit, 6 Crew 333 299 24 9

540-day Surface, 4 Crew 665 599 48 19

540-day Surface, 6 Crew 998 898 72 28



Water Recovery Systems

Forward Contamination & Mitigation Options

 Most water recycling technology options generate brines.

 The organic content of brines are dependent on initial wastewater 
composition and water processing technology

 Dried brine residuals become solid waste 
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LMLSTP: Lunar-Mars Life Support Test Project

IAWRS: Integrated Advanced Water Recovery System

AWP: Alternative Water Processor

DCT:  Distillation Comparison Test

UPA:  Urine Processor Assembly

Aerosol Dryers

Spray Drying

Ultrasonic Nebulization

Wick Evaporation

Air Evaporation System

Air Evap. with Reusable Wicks

Membrane Systems

Brine Evaporation Bag (BEB)

Ionomer-Membrane Water 

Processor System

Bulk or Surface Drying

Brine Residual In-Containment

Enhanced Brine Dewatering

Lyophilization

Technology Development 

Focus is on H2O Recovery
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Waste Management Systems (WRS)

Sources of Forward Contamination

 The SOA for solid waste management is collection, storage and jettison.

Production 

Rate

(kg/CM-day)

Mass 

Fraction H2O

Mass 

Fraction 

Organics*

Mass 

Fraction 

Inorganics*

Crew Consumables Trash 0.91 0.184 0.720 0.096

Feces 0.12 0.732 0.268 0.000

Mission Segment, # of Crew Total (kg)
H2O Content 

(kg)

Organic 

Content (kg)

Inorganic 

Content (kg)

Feces, 180-day Transit, 4 Crew 89 65 24 0

Feces, 180-day Transit, 6 Crew 133 97 36 0

Trash, 180-day Transit, 4 Crew 654 120 471 63

Trash, 180-day Transit, 6 Crew 982 180 707 95

Feces, 540-day Surface, 4 Crew 266 194 71 0

Feces, 540-day Surface, 6 Crew 399 292 107 0

Trash, 540-day Surface, 4 Crew 1,963 360 1,414 189

Trash, 540-day Surface, 6 Crew 2,945 541 2,120 284

 Feces & trash have high organic content (includes paper & plastics)
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Waste Management Systems (WRS)

Sources of Forward Contamination

 Trash can be highly biologically active!

AIAA 2012-3565: “Characterization of Volume F 

trash the three FY11 STS missions: Trash weights 

and categorization and microbial characterization

Fungal Isolates from STS 129-131 Bacterial Isolates from STS 129-132

Personal 

hygiene 

waste

Fusarium oxysporum, Candida albicans

Staphylococcus aureus, Bacillus subtilis ss subtilis, 

Staphylococcus sp, Enterobacter aerogenes,  Enterococcus 

pseudoavium,  Staphylococcus aureus, Staphylococcus 

epidermidis, Bacillus subtilis ss subtilis, Curtobacterium spp, 

Sphingomonas sanquinis, Enterobacter pyrinus

Food

Rhodotorula hylophyla, Rhodotorula spp, 

Penicillium steckii, Cryptococcus albidus, 

Rhodotorula mucilaginosa, Candida albicans

Bacillus spp.,  Enterococcus pseudoavium,  Staphylococcus 

aureus Staphylococcus saprophyticus,  Bacillus pumilus

Sphingomonas sanquinis

Drink 

pouches

Candida catenulate, Rhodosporidium diobovatum, 

Candida albicans, Cryptococcus laurentii, 

Rhodotorula, Aspergillus

Bacillus subtilis ss subtilis,  Enterococcus pseudoavium, 

Burkholderia cepacia,  Staphylococcus aureus,  Enterobacter

pyrinus, Citrobacter spp, Sphingomonas sanquinis, Burkholderia

multivorans, Enterobacter pyrinus

External 

surfaces

Cladosporium herbarum, Rhodotorula glutinis, 

Rhodotorula mucilaginosa, Cryptococcus laurentii, 

Candida albicans, Aspergillus sydowii

Bacillus amyloliquifaciens, Bacillus pumilus,  Microbacterium 

marytipicum, Bacillus amyloliquifaciens,  Paenibacillus pabuli,  

Bacillus amyloliquifaciens, Burkholderia pyrrocinia

Internal 

surfaces
Candida albicans, Rhodosporidium diobovatum Bacillus subtilis ss subtilis,  Bacillus subtilis ss subtilis,

MAGS/elbow 

contents
Candida albicans, Fusarium spp, Rhodotorula spp. E. coli, Citrobacter murliniae,  Shigella flexneri
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Waste Management Systems (WRS)

Processes & Technology Candidates
Volume Reduction (VR)

Storage space for wastes is very limited on 

space vehicles.  Volume reduction or 

compaction saves valuable space. 

Water Removal and Recovery (WR&R)
Many wastes such as concentrated brines and 

food waste contain substantial quantities of 

water.

Safening – Stabilization (S-S)
Safening means processing the waste to make it 

safe for the crew or harmless to planetary 

surfaces.  Once safened, stabilization assures 

that waste does not change its state.

Containment and Disposal (C&D)
Contained waste is isolated from the crew and 

the external environment. Disposal can be 

onboard, overboard, in space, and on planetary 

surfaces.

Resource Recovery (RR)
Waste can be processed for reuse for the initial 

function, or it can be converted to new useful 

materials.   Examples include cleaning clothes 

for reuse, converting waste to minerals for use 

as food growth nutrients, and trash to gas.

Technology 

Candidates
Processes

Plastic Heat Melt 

Compactor
VR, WR&R, S-S

Lyophiliization WR&R, S-S

Air Drying WR&R, S-S

Vacuum Drying WR&R, S-S

Trash to Supply 

Gas
VR, WR&R, S-S, RR

Pyrolysis VR, WR&R, S-S

Incineration VR, WR&R, S-S, RR

Hydrothermal 

Oxidation
VR, WR&R, S-S, RR

Composting VR, WR&R, S-S, RR

Clothes Wash RR

Storage & Jettison C&D



Forward Contamination Mitigation

Solid Waste Mineralization: Trash to Supply Gas
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IncinerationSCWO Pyrolysis
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SCWO

Heat Melt Compactor discs were evaluated with 

spore test strips (Bacillus atrophaeus & 

Geobacillus stearothermophilus)

Waste Management Systems (WRS)

Technology Candidates – Heat Melt Compaction

Heat Melt Compactor

 Reduces volume, removes & recovers water, 

encapsulates organics and renders trash a 

biologically stable and safe product.

 Plastic content - potential for radiation 

shielding

 Microbial studies demonstrated efficacy
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Bioregenerative Life Support Systems

 Biological systems, including 
food production, represent the 
potential “ultimate” in closed 
life support.

 Bioreactors and composters 
could be used to biologically 
degrade liquid and solid wastes.

 Plants produce food but also 
photosynthetically convert CO2

into oxygen and can utilize 
nutrients in wastewater.

 These systems will include very 
unique biological burdens

 These could be benefactors for 
recycling mineralized or 
composted solid wastes.

 But likely, on a first human 
mission to Mars, plants may be 
used only for food system 
augmentation – for fresh 
vegetables.
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Backward Contamination Considerations

 Dust mitigation will be a consideration for protection from hazards of 

Mars regolith, including hexavalent chromium and perchlorates.

 Human quarantine capability – dual ECLSS systems, compartmented 

cabin?

 Continuing the chain – if people have been exposed to Mars materials, 

what does that say about the return transit vehicle?

Ion Exchange Bed (removes reactor by-

products)

Reactor

(oxidizes 

organics)

Preheater

(heats water 

to 275F)

Regenerative Heat 

Exchanger

(recovers heat)

Gas/Liquid Separator

(removes oxygen)

Particulate Filter

(removes

particulates)

Multi-filtration Beds

(removes dissolved 

contaminants)

O2

Heat

Exchanger

Ion Exchange Bed (removes reactor by-

products)

Reactor

(oxidizes 

organics)

Preheater

(heats water 

to 275F)

Regenerative Heat 

Exchanger

(recovers heat)

Gas/Liquid Separator

(removes oxygen)

Particulate Filter

(removes

particulates)

Multi-filtration Beds

(removes dissolved 

contaminants)

O2

Heat

Exchanger

 Use of ISRU derived life support 

consumables (water, O2)

 The ISS Water Recovery 

System’s Multi-filtration Beds 

and/or Vapor Compression 

Distillation assembly would need 

to be evaluated for removal of 

chromium and perchlorates

 The Volatiles Removal Assembly 

(VRA) heats process water to 

275F in a catalytic oxidizer. Would 

this be sufficient to sterilize Mars 

surface water?
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Planetary Protection Considerations for 

ECLSS Technology Development

 Planetary protection represents an additional set of requirements that 
technology developers need to consider early in development programs.

 Planetary protection will affect technology development by constraining how 
technologies can operate and what technologies may be considered:

 Limiting or prohibiting certain kinds of operations or processes (e.g. venting)

 Necessitating that other kinds of operations be performed (e.g. sterilization)

 Prohibiting what can be brought on a mission (e.g. extremophiles)

 Creating needs for new capabilities/technologies (e.g. containment)

 This may result in certain types of technologies being prohibited (vacuum 
desorption of beds?) or modifying their use (filtering vent lines)

 Backward Contamination has impacts (use of ISRU consumables; 
dispositioning contaminated materials; needs for quarantine capability)

 A “fully closed” ECLSS may ultimately be ideal for planetary protection, but to 
achieve this closure, launch mass and complexity may be extremely high – the 
law of diminishing returns.

 Ultimately, there will be effects on mission costs, development costs, and the 
mission trade space. Will a PP compliant ECLSS fit into the mission allocation?
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Supplemental Questions & Issues

 ECLSS engineers hunger quantitative requirements!

 What constitutes a biomarker?

 What discharges are acceptable?

 How can unacceptable discharges be made acceptable?

 For storage of wastes on the surface, what is the requirement for the 
life of the containment vessel?

 How can we certify the quality of ISRU produced consumables before 
use if we don’t know the threat?

 How much can we learn from precursor robotic missions?

 Will a conservative approach to planetary protection prohibit using 
bioregenerative systems?

 Prioritization of Planetary Protection against other mission 
requirements, including mass and complexity

 An ECLSS trade study driven by Planetary Protection requirements 
needs to be performed.

 We need to start re-investing in critical low TRL technologies, 
including waste management
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Summary

 Planetary protection guidelines will affect many operations, processes, 

and functions that have been utilized in spacecraft life support systems 

in the past or are under consideration for future missions

 Venting and discharge of liquids and solids

 Ejection of wastes

 Use of ISRU

 Requirements for cabin atmospheric trace contaminant 

concentrations and cabin leakage

 What materials, organisms, & technologies that can be brought on 

missions

 Planetary protection represents an additional set of requirements that 

must be considered during the technology development phase.

 Planetary protection requirements will have a major impact on 

technology selection for future missions.

 Planetary protection requirements need to be considered early in 

technology development programs.



The Questions

 What planetary protection (PP) related research activities or 

technical developments do you feel are critical for inclusion in 

your study area?

 Properties of regolith & dust to design filtration and removal systems

 Medical research to set allowable exposure limits

 Science inputs on how much of what type can be vented. (Zero is not a 

good answer.)

 Science inputs on how long wastes (or whole habitats) left on the surface 

must remain stable and sealed. (Forever is not a useful answer.)

 What work/research is already underway?

 Life support teams are investing minimal work in planetary focused 

technologies. Stabilizing or destroying solid wastes is not minimally 

funded. Regolith focused particulate work is not funded.

 MEDA on Mars 2020 will do more to characterize regolith (in one 

location…)

 Any climate models from Mars 2020 may helps science community specify 

release requirements.
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The Questions

 Is special information or technology needed to plan for nominal 

vs. non-nominal situations?

 If crewmembers need to be quarantined from each other (and a recycling 

life support system) then different technology is needed

 Abort cases could drop significant portions of a spacecraft on a surface 

and ruin any containment.

 Are existing human mission mitigation options and approaches 

adaptable for PP needs on the martian surface?

 Filtration can be applied to known outputs (leakage always happens…), but 

often at a performance cost

 Are there any significant stumbling blocks ahead that are 

evident? (Including coordination across PP, science exploration, 

engineering, operation and medical communities.)

 Engineers require numbers to drive design and make decisions. “ALARA” 

requirements are very difficult to use to create good results.
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The Questions

 In your opinion, what still needs to be accomplished? 

 Work to set storage time limits for known wastes

 Identify criticality of impact inevitable leakage to science objectives

 At minimum, formulate requirements with TBD quantitative levels for 

human environment conditions soon so we can at least start to address 

functions

 Perform a systems analysis and mission trade study for Mars mission 

ECLSS with focus on Planetary Protection constraints and flush out 

costs/penalties to mass, power, volume and technology selection.
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